Comparison between Laplacian--energy--like invariant and Kirchhoff index

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison between Laplacian--energy--like invariant and Kirchhoff index

For a simple connected graph G of order n, having Laplacian eigenvalues μ1, μ2, . . . , μn−1, μn = 0, the Laplacian–energy–like invariant (LEL) and the Kirchhoff index (Kf) are defined as LEL(G) = ∑n−1 i=1 √ μi and Kf(G) = n ∑n−1 i=1 1 μi , respectively. In this paper, LEL and Kf are compared, and sufficient conditions for the inequality Kf(G) < LEL(G) are established.

متن کامل

On Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs

Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...

متن کامل

on laplacian-energy-like invariant and incidence energy

for a simple connected graph $g$ with $n$-vertices having laplacian eigenvalues‎ ‎$mu_1$‎, ‎$mu_2$‎, ‎$dots$‎, ‎$mu_{n-1}$‎, ‎$mu_n=0$‎, ‎and signless laplacian eigenvalues $q_1‎, ‎q_2,dots‎, ‎q_n$‎, ‎the laplacian-energy-like invariant($lel$) and the incidence energy ($ie$) of a graph $g$ are respectively defined as $lel(g)=sum_{i=1}^{n-1}sqrt{mu_i}$ and $ie(g)=sum_{i=1}^{n}sqrt{q_i}$‎. ‎in th...

متن کامل

A note on the bounds of Laplacian-energy-like-invariant

The Laplacian-energy-like of a simple connected graph G is defined as LEL:=LEL(G)=∑_(i=1)^n√(μ_i ), Where μ_1 (G)≥μ_2 (G)≥⋯≥μ_n (G)=0 are the Laplacian eigenvalues of the graph G. Some upper and lower bounds for LEL are presented in this note. Moreover, throughout this work, some results related to lower bound of spectral radius of graph are obtained using the term of ΔG as the num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Linear Algebra

سال: 2016

ISSN: 1081-3810

DOI: 10.13001/1081-3810.2961